602 research outputs found

    Exploring the Roles of Aquaporins in Plant-Microbe Interactions

    Get PDF
    Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants’ physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions

    First-principles study on transition metal-doped anatase TiO2

    Full text link

    The association between the rs11196218A/G polymorphism of the TCF7L2 gene and type 2 diabetes in the Chinese Han population: a meta-analysis

    Get PDF
    Transcription factor 7-like 2 has been shown to be associated with type 2 diabetes mellitus in multiple ethnic groups in recent years. In the Chinese Han population in particular, numerous studies have evaluated the association between the rs11196218A/G polymorphism of the transcription factor 7-like 2 gene and type 2 diabetes mellitus. However, the results have been inconsistent, so we performed a meta-analysis to assess the association. Odds ratio and 95% confidence interval values were calculated using a random-effects model or a fixed-effects model based on heterogeneity analysis. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale. Subgroup analyses were conducted based on conformity with Hardy-Weinberg equilibrium in the control group as well as on other variables, such as age, sex and body mass index. Sensitivity analysis was also performed to detect heterogeneity and to assess the stability of the results. In total, 10 case-control studies comprising 7,491 cases and 12,968 controls were included in this meta-analysis. The combined analysis indicated that the rs11196218A/G polymorphism was not associated with type 2 diabetes mellitus (G vs. A, OR=1.04, 95% CI=0.97–1.13, p=0.28). The subgroup analyses also did not show any association between the rs11196218A/G polymorphism and the risk of type 2 diabetes mellitus. Furthermore, the results of the subgroup analyses indicated that the absence of an association was not influenced by age, sex or body mass index. The results of the sensitivity analysis verified the reliability and stability of this meta-analysis. In conclusion, this study indicated that there is no significant association between the rs11196218A/G polymorphism and the risk of type 2 diabetes mellitus in the Chinese Han population

    Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale

    Get PDF
    Considering the extensive functional redundancy in microbial communities and great difficulty in elucidating it based on taxonomic structure, studies on the biogeography of soil microbial activity at large spatial scale are as important as microbial community structure. Eighty-four soil samples were collected across a region from south to north China (about 1,000 km) to address the questions if microbial activity displays biogeographic patterns and what are driving forces. These samples represented different soil types, land use and climate. Redundancy analysis and nonmetric multidimensional scaling clearly revealed that soil microbial activities showed distinct differentiation at different sites over a regional spatial scale, which were strongly affected by soil pH, total P, rainfall, temperature, soil type and location. In addition, microbial community structure was greatly influenced by rainfall, location, temperature, soil pH and soil type and was correlated with microbial activity to some extent. Our results suggest that microbial activities display a clear geographic pattern that is greatly altered by geographic distance and reflected by climate, soil pH and total P over large spatial scales. There are common (distance, climate, pH and soil type) but differentiated aspects (TP, SOC and N) in the biogeography of soil microbial community structure and activity

    Bis[1,3-bis­(1-benzyl-1H-benzimidazol-2-yl)-2-oxapropane]zinc(II) dipicrate dimethyl­formamide disolvate

    Get PDF
    In the title compound, [Zn(C30H26N4O)2](C6H2N3O7)2·2C3H7NO, the ZnII ion is coordinated in a distorted octa­hedral environment involving four equatorial N atoms and two O atoms in axial sites. The dihedral angles between the benzimidazole ring system and the phenyl rings in each of the benzyl­benzimidazole units are 78.56 (12), 81.68 (11), 75.76 (10) and 85.78 (9)°. In the crystal structure, there are weak but significant inter­molecular π–π stacking inter­actions with centroid–centroid distances of 3.685 (1) and 3.978 (1) Å
    corecore